More details
Outcomes
In this unit you will learn that:
- Osmosis is the movement of a liquid from an area of high concentration to an area of low concentration until it reaches equilibrium.
In this unit you will learn that:
The particle model of matter is one of the most useful scientific models because it describes matter in all three states. Understanding how the particles of matter behave is vital if we hope to understand science!
The model also helps us to understand what happens to the particles when matter changes from one state to another.
In this unit, you will explore the three phases of matter and then look at the properties and differences between them. You will explore their shape, volume, and kinetic energy.
Using position-time graphs and number lines to find displacement and distance traveled.
In this unit you will learn about different materials by investigating and observing the behaviour of their properties. This will include learning about the differences between metals and non-metals; whether they are isolators or conductors of electricity and heat, whether they are magnetic, how dense they are and whether they are acidic or basic.
This section introduces you to the realm of physics, and discusses applications of physics in other disciplines of study. It also describes the methods by which science is done, and how scientists communicate their results to each other.
Physics is a branch of science. The word science comes from a Latin word that means having knowledge, and refers the knowledge of how the physical world operates, based on objective evidence determined through observation and experimentation. A key requirement of any scientific explanation of a natural phenomenon is that it must be testable; one must be able to devise and conduct an experimental investigation that either supports or refutes the explanation. It is important to note that some questions fall outside the realm of science precisely because they deal with phenomena that are not scientifically testable. This need for objective evidence helps define the investigative process scientists follow, which will be described later in this chapter.
Worked examples finding displacement and distance from position-time graphs.