Managing time involves accurately predicting how much time it will take to do a task, and then setting aside that amount of time to complete it. Managing time is much more difficult than it may seem, which is why there are entire courses of study and research on the best approaches. But if you develop a method to undertake each component, you’ll be successful.
A force diagram is a useful tool to help us visualise forces acting on an object and gives us informa- tion about the object’s motion. We often use force diagrams when solving calculations involving the forces acting on an object.
In this unit you will learn about different materials by investigating and observing the behaviour of their properties. This will include learning about the differences between metals and non-metals; whether they are isolators or conductors of electricity and heat, whether they are magnetic, how dense they are and whether they are acidic or basic.
In this unit you will learn what a force is and find out about different types of forces. This will allow you to identify forces at work in your everyday life and understand the effects of forces.
In this unit, you will explore the three phases of matter and then look at the properties and differences between them. You will explore their shape, volume, and kinetic energy.
What exactly is energy? How can changes in force, energy, and simple machines move objects like roller coaster cars? How can machines help us do work? In this chapter, you will discover the answer to this question and many more, as you learn about work, energy, and simple machines.
saac Newton (1642–1727) was a natural philosopher; a great thinker who combined science and philosophy to try to explain the workings of nature on Earth and in the universe. His laws of motion were just one part of the monumental work that has made him legendary. The development of Newton’s laws marks the transition from the Renaissance period of history to the modern era. This transition was characterized by a revolutionary change in the way people thought about the physical universe. Drawing upon earlier work by scientists Galileo Galilei and Johannes Kepler, Newton’s laws of motion allowed motion on Earth and in space to be predicted mathematically.
This section introduces you to the realm of physics, and discusses applications of physics in other disciplines of study. It also describes the methods by which science is done, and how scientists communicate their results to each other.
Physics is a branch of science. The word science comes from a Latin word that means having knowledge, and refers the knowledge of how the physical world operates, based on objective evidence determined through observation and experimentation. A key requirement of any scientific explanation of a natural phenomenon is that it must be testable; one must be able to devise and conduct an experimental investigation that either supports or refutes the explanation. It is important to note that some questions fall outside the realm of science precisely because they deal with phenomena that are not scientifically testable. This need for objective evidence helps define the investigative process scientists follow, which will be described later in this chapter.
Short Physics tutorial on Forces. On completion you will be able to
- Define and explain what a force is
- List and describe the main kinds of forces
- Explain the effects of a force
The beauty of a coral reef, the warm radiance of sunshine, the sting of sunburn, the X-ray revealing a broken bone, even microwave popcorn—all are brought to us by electromagnetic waves. The list of the various types of electromagnetic waves, ranging from radio transmission waves to nuclear gamma-ray (γ-ray) emissions, is interesting in itself.
Even more intriguing is that all of these different phenomena are manifestations of the same thing—electromagnetic waves (see Figure 15.1). What are electromagnetic waves? How are they created, and how do they travel? How can we understand their widely varying properties? What is the relationship between electric and magnetic effects? These and other questions will be explored.