- Reset Search
- 154 results found
- (-) Concept of Physics
- (-) Work, energy and power
- (-) Form 2
More details
Outcomes
In this course you will learn about:
- Expanding brackets.
- Factorising by grouping.
- Factorising by finding the difference of two squares.
- Factorising trinomials.
- Simplifying algebraic fractions
More details
This video explains the angles of elevation and depression.
More details
Applying Newton's first law to answer some true/false statements about why objects move (or not).
More details
Solving a word problem to find average velocity and speed of an object in one-dimension.
More details
Patterns and processes of evolution. How evolution and natural selection are reflected in the similarities and differences of organisms.
More details
Forces at a distance are explained by fields (gravitational, electric, and magnetic) permeating space that can transfer energy through space. Magnets or electric currents cause magnetic fields; electric charges or changing magnetic fields cause electric fields.
More details
Learn how you can calculate the maximum height of a launched object by using the total energy of a system. Energy that is conserved can be transferred within a system from one object to another changing the characteristics of each object, like position.
More details
Mathematical expressions, which quantify how the stored energy in a system depends on its configuration (e.g. relative positions of charged particles, compression of a spring) and how kinetic energy depends on mass and speed, allow the concept of conservation of energy to be used to predict and describe system behaviour.
More details
Learn how you can calculate the launch velocity of an object by using the total energy of a system. Energy that is conserved can be transferred within a system from one object to another changing the characteristics of each object, like velocity.