Why do astronauts appear weightless despite being near the Earth?
Figuring out the acceleration of ice down a plane made of ice.
An elaboration on some of the common misconceptions in dealing with Newton's Third Law. He also shows how to correctly and reliably identify Third Law force pairs.
Learn about Newton's third law of motion, which states that for every action there is an equal and opposite reaction. Look at multiple examples that illustrate this law, including pushing a block on ice, pushing against a desk, walking on sand, how rockets work, and how an astronaut could save themselves from drifting in space.
Newton's second law of motion is F = ma, or force is equal to mass times acceleration. Learn how to use the formula to calculate acceleration.
Applying Newton's first law to answer some true/false statements about why objects move (or not).
Basic primer on Newton's First Law of motion.