- Reset Search
- 35 results found
- (-) Viruses
- (-) Current electricity
- (-) Motion in a straight line
More details
Solving a word problem to find average velocity and speed of an object in one-dimension.
More details
In this unit you will apply your understanding of the components of motion in one dimension using linear equations. This will help you to solve problems about motion in one direction and equip you to understand how these concepts apply to everyday life.
There are three equations for linear motion with constant acceleration. They can be used to calculate, and therefore predict, the outcome of motion when three out of the four variables are known.
More details
- Explain basic electricity relationships in series and parallel circuits.
- Use an ammeter and voltmeter to take readings in circuits.
- Provide reasoning to explain the measurements and relationships in circuits.
- Build circuits from schematic drawings.
- Determine if common objects are conductors or insulators.
- Compare and contrast AC and DC circuits.
- Describe how capacitors and inductors behave in a circuit.
- Experimentally determine the RC time constant.
- Construct RLC circuits and determine the conditions for resonance.
More details
- Explore basic electricity relationships.
- Explain basic electricity relationships in series and parallel circuits.
- Use an ammeter and voltmeter to take readings in circuits.
- Provide reasoning to explain the measurements and relationships in circuits.
- Build circuits from schematic drawings.
- Determine if common objects are conductors or insulators.
More details
In this lesson you will learn that:
- Circuit diagrams are used to show how electrical components are connected in a circuit.
- Individual circuit components are represented using circuit symbols.
- Current is the flow of electrons around a circuit.
- Ammeters are used to measure the current flowing through components.
- Components in a circuit resist current flow.
- Voltmeters are used to measure the potential difference across components.
More details
You have learnt about static electricity where charged particles (electrons) can move from one object into another giving objects an overall charge. In this unit1 you will learn about current electricity. This is when a continuous flow of charge can be created using a circuit made of conducting wires and an energy source.
More details
The flicker of numbers on a handheld calculator, nerve impulses carrying signals of vision to the brain, an ultrasound device sending a signal to a computer screen, the brain sending a message for a baby to twitch its toes, an electric train pulling into a station, a hydroelectric plant sending energy to metropolitan and rural users—these and many other examples of electricity involve electric current, which is the movement of charge. Humanity has harnessed electricity, the basis of this technology, to improve our quality of life.
More details
- Identify when forces are balanced vs unbalanced.
- Determine the sum of forces (net force) on an object with more than one force on it.
- Predict the motion of an object with zero net force.
- Predict the direction of motion given a combination of forces.
More details
Why do astronauts appear weightless despite being near the Earth?