More details
Applying Newton's first law to answer some true/false statements about why objects move (or not).
Applying Newton's first law to answer some true/false statements about why objects move (or not).
The idea of the electric field, how it's useful, and explains how the electric field is defined.
There are many different processes and phenomena that emit electromagnetic radiation. Humans have taken advantage of many of these processes to develop technologies that use electromagnetic radiation.
Figuring out the acceleration of ice down a plane made of ice.
The beauty of a coral reef, the warm radiance of sunshine, the sting of sunburn, the X-ray revealing a broken bone, even microwave popcorn—all are brought to us by electromagnetic waves. The list of the various types of electromagnetic waves, ranging from radio transmission waves to nuclear gamma-ray (γ-ray) emissions, is interesting in itself.
Even more intriguing is that all of these different phenomena are manifestations of the same thing—electromagnetic waves (see Figure 15.1). What are electromagnetic waves? How are they created, and how do they travel? How can we understand their widely varying properties? What is the relationship between electric and magnetic effects? These and other questions will be explored.
Forces at a distance are explained by fields (gravitational, electric, and magnetic) permeating space that can transfer energy through space. Magnets or electric currents cause magnetic fields; electric charges or changing magnetic fields cause electric fields.
Magnetism is an interaction that allows certain kinds of objects, which are called ‘magnetic’ objects, to exert forces on each other without physically touching. A magnetic object is surrounded by a magnetic ‘field’ that gets weaker as one moves further away from the object. A second object can feel a magnetic force from the first object because it feels the magnetic field of the first object. The further away the objects are the weaker the magnetic force will be.
An elaboration on how to use Newton's second law when dealing with multiple forces, forces in two dimensions, and diagonal forces.
An elaboration on some of the common misconceptions in dealing with Newton's Third Law. He also shows how to correctly and reliably identify Third Law force pairs.