More details
Video 1: Explores what angles are
Video 2: Provides examples of angles
Video 3: Misconceptions about angles
Video 1: Explores what angles are
Video 2: Provides examples of angles
Video 3: Misconceptions about angles
This video explores the angles found in parallel lines.
As a student, you'll encounter vast amounts of information. Beyond academic material, you must process and interpret news, instructions, communications, and a wealth of other data. You'll also need to separate fact from opinion, and understand the quality of sources. The stronger your reading capabilities, the more efficiently and effectively you can turn information into knowledge.
Scalars and vectors are two kinds of quantities that are used in physics and math. Scalars are quantities that only have magnitude (or size), while vectors have both magnitude and direction. Explore some examples of scalars and vectors, including distance, displacement, speed, and velocity.
An overview of what physics is about as we delve deeper in future videos. How physics is related to math, the other sciences, and the world around us.
To lay the foundation for understanding what trigonometry is and how it works, do this next activity.
This video explores the different types of angles that exist.
This section introduces you to the realm of physics, and discusses applications of physics in other disciplines of study. It also describes the methods by which science is done, and how scientists communicate their results to each other.
Physics is a branch of science. The word science comes from a Latin word that means having knowledge, and refers the knowledge of how the physical world operates, based on objective evidence determined through observation and experimentation. A key requirement of any scientific explanation of a natural phenomenon is that it must be testable; one must be able to devise and conduct an experimental investigation that either supports or refutes the explanation. It is important to note that some questions fall outside the realm of science precisely because they deal with phenomena that are not scientifically testable. This need for objective evidence helps define the investigative process scientists follow, which will be described later in this chapter.