More details
Part 1: Comparing like and unlike fractions
Part 2: Examples of comparing like and unlike fractions
Part 3: Common mistakes made when comparing fractions
Part 1: Comparing like and unlike fractions
Part 2: Examples of comparing like and unlike fractions
Part 3: Common mistakes made when comparing fractions
As a student, you'll encounter vast amounts of information. Beyond academic material, you must process and interpret news, instructions, communications, and a wealth of other data. You'll also need to separate fact from opinion, and understand the quality of sources. The stronger your reading capabilities, the more efficiently and effectively you can turn information into knowledge.
Fraction comparison with lowest common denominators.
This video explains how to order fractions by their size.
Scalars and vectors are two kinds of quantities that are used in physics and math. Scalars are quantities that only have magnitude (or size), while vectors have both magnitude and direction. Explore some examples of scalars and vectors, including distance, displacement, speed, and velocity.
An overview of what physics is about as we delve deeper in future videos. How physics is related to math, the other sciences, and the world around us.
YouTube video that explains how to use prime factorization to find the highest common factor and lowest common multiple. It is very simple using the method described in the video.
This section introduces you to the realm of physics, and discusses applications of physics in other disciplines of study. It also describes the methods by which science is done, and how scientists communicate their results to each other.
Physics is a branch of science. The word science comes from a Latin word that means having knowledge, and refers the knowledge of how the physical world operates, based on objective evidence determined through observation and experimentation. A key requirement of any scientific explanation of a natural phenomenon is that it must be testable; one must be able to devise and conduct an experimental investigation that either supports or refutes the explanation. It is important to note that some questions fall outside the realm of science precisely because they deal with phenomena that are not scientifically testable. This need for objective evidence helps define the investigative process scientists follow, which will be described later in this chapter.