Viewing g as the value of Earth's gravitational field near the surface rather than the acceleration due to gravity near Earth's surface for an object in freefall.
Basics of gravity and the Law of Universal Gravitation.
An elaboration on some of the common misconceptions in dealing with Newton's Third Law. He also shows how to correctly and reliably identify Third Law force pairs.
Learn about Newton's third law of motion, which states that for every action there is an equal and opposite reaction. Look at multiple examples that illustrate this law, including pushing a block on ice, pushing against a desk, walking on sand, how rockets work, and how an astronaut could save themselves from drifting in space.
An elaboration on how to use Newton's second law when dealing with multiple forces, forces in two dimensions, and diagonal forces.
Newton's second law of motion is F = ma, or force is equal to mass times acceleration. Learn how to use the formula to calculate acceleration.
Applying Newton's first law to answer some true/false statements about why objects move (or not).
Basic primer on Newton's First Law of motion.
Understanding why distance is area under velocity-time line.
Instantaneous speed is a measurement of how fast an object is moving at that particular moment. Instantaneous velocity is a vector quantity that includes both the speed and the direction in which the object is moving. Learn how to find an object’s instantaneous speed or velocity in three ways - by using calculus, by looking at the slope of a given point on a graph of an object’s rate vs. time, or by using kinematic formulas if the object’s acceleration is constant.