More details
Outcomes
In this unit you will learn about:
- The concept and applications of adhesion
- The concept and applications of cohesion
More details
DNA is made up of two strands. Each strand has a backbone made up of alternating sugars and phosphate groups. The two strands are linked by complementary nitrogenous bases. The strands are oriented in opposite directions, making the structure "antiparallel".
More details
Outcomes
In this course you will learn about:
- Archimedes discovery.
- Why some objects float and others sink.
- Buoyant force.
- Archimedes principle.
More details
Binary fission, budding, mitosis, fragmentation, parthenogenesis and sexual reproduction.
More details
Solving a word problem to find average velocity and speed of an object in one-dimension.
More details
Breaking down photosynthesis into light dependent reactions and Calvin cycle..
More details
Forces at a distance are explained by fields (gravitational, electric, and magnetic) permeating space that can transfer energy through space. Magnets or electric currents cause magnetic fields; electric charges or changing magnetic fields cause electric fields.
More details
Learn how you can calculate the maximum height of a launched object by using the total energy of a system. Energy that is conserved can be transferred within a system from one object to another changing the characteristics of each object, like position.
More details
Mathematical expressions, which quantify how the stored energy in a system depends on its configuration (e.g. relative positions of charged particles, compression of a spring) and how kinetic energy depends on mass and speed, allow the concept of conservation of energy to be used to predict and describe system behaviour.