More details
Patterns and processes of evolution. How evolution and natural selection are reflected in the similarities and differences of organisms.
Patterns and processes of evolution. How evolution and natural selection are reflected in the similarities and differences of organisms.
Outcomes:
Cellular respiration is the process by which cells derive energy from glucose. The chemical reaction for cellular respiration involves glucose and oxygen as inputs, and produces carbon dioxide, water, and energy (ATP) as outputs. There are three stages to cellular respiration: glycolysis, the Krebs cycle, and the electron transport chain.
Introduction to passive and active transport
Food webs are models that demonstrate how matter and energy is transferred between producers, consumers, and decomposers as the three groups interact within an ecosystem. Transfers of matter into and out of the physical environment occur at every level. Decomposers recycle nutrients from dead plant or animal matter back to the soil in terrestrial environments or to the water in aquatic environments. The atoms that make up the organisms in an ecosystem are cycled repeatedly between the living and nonliving parts of the ecosystem.
Mitosis, meiosis and sexual reproduction. Understanding gametes, zygotes, and haploid / diploid numbers.
Osmosis is the movement of water across a semi-permeable membrane from an area of low solute concentration to an area of high solute concentration. Osmosis helps regulate the flow of water in and out of cells, which is crucial to their function.
The Calvin Cycle or the light-independent (dark) reactions of photosynthesis.
Electric charge comes in two varieties, which we call positive and negative. Like charges repel each other, and unlike charges attract each other. Thus, two positive charges repel each other, as do two negative charges. A positive charge and a negative charge attract each other.
How do we know there are two types of electric charge? When various materials are rubbed together in controlled ways, certain combinations of materials always result in a net charge of one type on one material and a net charge of the opposite type on the other material. By convention, we call one type of charge positive and the other type negative.