More details
Understanding the structure of a muscle cell
Understanding the structure of a muscle cell
Introduction to cell theory--the idea that 1) all living things are made of one or more cells, 2) cells are the basic unit of life and 3) all cells come from other cells. Explore the roles that Hooke, Leeuwenhoek and others played in developing cell theory.
Hooke and Leeuwenhoek were two of the first scientists to use microscopes to study the microscopic world of cells. Hooke coined the term "cell" after observing the tiny compartments in cork, while Leeuwenhoek discovered a variety of living creatures in pond water, blood, and other samples. They contributed to the cell theory by suggesting that cells are the fundamental units of life and structure, and that all living things consist of one or more cells that originate from other cells by division.
All living things are made up of cells, which is the smallest unit that can be said to be alive. An organism may consist of one single cell (unicellular) or many different numbers and types of cells (multicellular).
Plant cells have a cell wall in addition to a cell membrane, whereas animal cells have only a cell membrane. Plants use cell walls to provide structure to the plant. Plant cells contain organelles called chloroplasts, while animal cells do not. Chloroplasts allow plants to make the food they need to live using photosynthesis.
The Earth behaves like a giant bar magnet and as such there is a magnetic field present around it. The Earth’s magnetic field is thought to be caused by flowing liquid metals in the outer core of the planet which causes electric currents and a magnetic field.
The idea of the electric field, how it's useful, and explains how the electric field is defined.
There are many different processes and phenomena that emit electromagnetic radiation. Humans have taken advantage of many of these processes to develop technologies that use electromagnetic radiation.
Introduction to the cell.
Introduction to cellular respiration, glycolysis, the Kreb's Cycle, and the electron transport chain.
The beauty of a coral reef, the warm radiance of sunshine, the sting of sunburn, the X-ray revealing a broken bone, even microwave popcorn—all are brought to us by electromagnetic waves. The list of the various types of electromagnetic waves, ranging from radio transmission waves to nuclear gamma-ray (γ-ray) emissions, is interesting in itself.
Even more intriguing is that all of these different phenomena are manifestations of the same thing—electromagnetic waves (see Figure 15.1). What are electromagnetic waves? How are they created, and how do they travel? How can we understand their widely varying properties? What is the relationship between electric and magnetic effects? These and other questions will be explored.