More details
Introduction to the cell.
Introduction to the cell.
Introduction to cellular respiration, glycolysis, the Kreb's Cycle, and the electron transport chain.
Energy is defined as the ability to do work. Energy can be found in many things and can take different forms. For example, kinetic energy is the energy of motion, and potential energy is energy due to an object's position or structure. Energy is never lost, but it can be converted from one form to another.
Light and the electromagnetic radiation spectrum. Wave and particle-like behaviour, and how to calculate the wavelength or frequency of a light wave.
A discussion on how energy can't be created or destroyed in an isolated system, and works an example of how energy is transformed when a ball falls toward the Earth.
An explanation of how LOL diagrams allow us to visually represent what we mean by conservation of energy as well as what we mean by an energy system.
Overview of animal and plant cells. Topics include cell walls, vacuoles, chloroplasts, peroxisomes, lysosomes, mitochondria, etc.
The potential energy between two objects due to long-distance forces can be thought of as being stored in a field. When the objects move due to the field forces, the energy stored in the field decreases
Even though molecules, proteins, viruses, and cells are all tiny, there are significant size differences between them. The diameter of a water molecule is roughly 0.28 nanometers. The diameter of the protein hemoglobin is roughly 5 nanometers. The diameter of the HIV virus is roughly 120 nanometers. A red blood cell is 6-8 micrometers.
Energy is a quantitative property of a system that depends on the motion and interactions of matter and radiation within that system. That there is a single quantity called energy is due to the fact that a system’s total energy is conserved, even as, within the system, energy is continually transferred from one object to another and between its various possible forms.