More details
A discussion on how energy can't be created or destroyed in an isolated system, and works an example of how energy is transformed when a ball falls toward the Earth.
A discussion on how energy can't be created or destroyed in an isolated system, and works an example of how energy is transformed when a ball falls toward the Earth.
An explanation of how LOL diagrams allow us to visually represent what we mean by conservation of energy as well as what we mean by an energy system.
Introduction to magnetism: Wikipedia article that provides an overview of the concept.
In this lesson you will learn about:
The force that acts across the air gaps between magnets is the same force that creates wonders such as the Aurora Borealis. In fact, magnetic effects pervade our lives in myriad ways, from electric motors to medical imaging and computer memory. In this chapter, we introduce magnets and learn how they work and how magnetic fields and electric currents interact.
Forces at a distance are explained by fields (gravitational, electric, and magnetic) permeating space that can transfer energy through space. Magnets or electric currents cause magnetic fields; electric charges or changing magnetic fields cause electric fields.
Magnetism is an interaction that allows certain kinds of objects, which are called ‘magnetic’ objects, to exert forces on each other without physically touching. A magnetic object is surrounded by a magnetic ‘field’ that gets weaker as one moves further away from the object. A second object can feel a magnetic force from the first object because it feels the magnetic field of the first object. The further away the objects are the weaker the magnetic force will be.
The potential energy between two objects due to long-distance forces can be thought of as being stored in a field. When the objects move due to the field forces, the energy stored in the field decreases
Energy is a quantitative property of a system that depends on the motion and interactions of matter and radiation within that system. That there is a single quantity called energy is due to the fact that a system’s total energy is conserved, even as, within the system, energy is continually transferred from one object to another and between its various possible forms.