More details
Video 1: How to create a line graph based on data
Video 2: Examples of different line graphs
Video 3: Further examples of line graphs
Video 1: How to create a line graph based on data
Video 2: Examples of different line graphs
Video 3: Further examples of line graphs
This podcast (audio) file explains how electric current can be obtained from the sun through the solar panel using direct illumination of the sun rays
Figuring out the acceleration of ice down a plane made of ice.
Determining how fast something will be traveling upon impact when it is released from a given height.
Explore the various forces acting on a block sitting on an inclined plane. Learn how to break the force of gravity into two components - one perpendicular to the ramp and one parallel to the ramp. Finally, using geometry and trigonometry, learn how to calculate the magnitude of each component of force that is acting on the block.
Instantaneous speed is a measurement of how fast an object is moving at that particular moment. Instantaneous velocity is a vector quantity that includes both the speed and the direction in which the object is moving. Learn how to find an object’s instantaneous speed or velocity in three ways - by using calculus, by looking at the slope of a given point on a graph of an object’s rate vs. time, or by using kinematic formulas if the object’s acceleration is constant.
Scalars and vectors are two kinds of quantities that are used in physics and math. Scalars are quantities that only have magnitude (or size), while vectors have both magnitude and direction. Explore some examples of scalars and vectors, including distance, displacement, speed, and velocity.
Cellular respiration is the process by which cells derive energy from glucose. The chemical reaction for cellular respiration involves glucose and oxygen as inputs, and produces carbon dioxide, water, and energy (ATP) as outputs. There are three stages to cellular respiration: glycolysis, the Krebs cycle, and the electron transport chain.
Basics of gravity and the Law of Universal Gravitation.
Introduction to passive and active transport