More details
There are many different processes and phenomena that emit electromagnetic radiation. Humans have taken advantage of many of these processes to develop technologies that use electromagnetic radiation.
There are many different processes and phenomena that emit electromagnetic radiation. Humans have taken advantage of many of these processes to develop technologies that use electromagnetic radiation.
In this course you will learn how to:
In this video we’re going to discover how to factorise quadratics that don’t have 1 as the coefficient of the x-squared term. These are called non-monic quadratics. We can do it by trial and error and just spotting the factors, but this takes a lot of trial an error. Luckily there is a different method we can use instead, which we will looks at in this video.
Use the dynamic worksheet to practice simplifying expressions with fractional exponents, rewriting them as radicals.
Three activities which illustrate the law of exponents.
This is a simple video which describes how indices problems are solved using simplified laws.
The beauty of a coral reef, the warm radiance of sunshine, the sting of sunburn, the X-ray revealing a broken bone, even microwave popcorn—all are brought to us by electromagnetic waves. The list of the various types of electromagnetic waves, ranging from radio transmission waves to nuclear gamma-ray (γ-ray) emissions, is interesting in itself.
Even more intriguing is that all of these different phenomena are manifestations of the same thing—electromagnetic waves (see Figure 15.1). What are electromagnetic waves? How are they created, and how do they travel? How can we understand their widely varying properties? What is the relationship between electric and magnetic effects? These and other questions will be explored.
Photoelectric materials emit electrons when they absorb light of a high-enough frequency.
Online problems where the student is required to simplify the expression using the product property of exponents.